skip to main content


Search for: All records

Creators/Authors contains: "Bentz, Misty C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay atτcent=4.00.9+0.9days and Heiihaving the shortest delay withτcent=0.90.8+1.1days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass ofMBH=1.10.3+0.2×107M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass ofMBH=1.20.7+1.5×107Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing.

     
    more » « less
  2. Abstract

    We present a new constraint on the mass of the black hole in the active S0 galaxy NGC 5273. Due to the proximity of the galaxy at 16.6 ± 2.1 Mpc, we were able to resolve and extract the bulk motions of stars near the central black hole using adaptive-optics-assisted observations with the Gemini Near-infrared Integral Field Spectrograph, as well as constrain the large-scale kinematics using archival Spectroscopic Areal Unit for Research and Optical Nebulae spectroscopy. High-resolution Hubble Space Telescope imaging allowed us to generate a surface-brightness decomposition, determine approximate mass-to-light ratios for the bulge and disk, and obtain an estimate for the disk inclination. We constructed an extensive library of dynamical models using the Schwarzschild orbit-superposition code FORSTAND, exploring a range of disk and bulge shapes, halo masses, etc. We determined a black hole mass ofM= [0.5–2] × 107M, where the low side of the range is in agreement with the reverberation mapping measurement ofM= [4.7 ± 1.6] × 106M. NGC 5273 is one of the few nearby galaxies that hosts a broad-lined active galactic nucleus, allowing a crucial comparison of black hole masses derived from independent mass-measurement techniques.

     
    more » « less
  3. Abstract

    We present the results of a new reverberation mapping campaign for the broad-line active galactic nucleus (AGN) in the edge-on spiral IC 4329A. Monitoring of the optical continuum withV-band photometry and broad emission-line flux variability with moderate-resolution spectroscopy allowed emission-line light curves to be measured for Hβ, Hγ, and Heiiλ4686. We find a time delay of16.32.3+2.6days for Hβ, a similar time delay of16.02.6+4.8days for Hγ, and an unresolved time delay of0.63.9+3.9days for Heii. The time delay for Hβis consistent with the predicted value from the relationship between AGN luminosity and broad-line region radius, after correction for the ∼2.4 mag of intrinsic extinction at 5100 Å. Combining the measured time delay for Hβwith the broad emission-line width and an adopted value of 〈f〉 = 4.8, we find a central supermassive black hole mass ofMBH=6.81.1+1.2×107M. Velocity-resolved time delays were measured across the broad Hβemission-line profile and may be consistent with an “M”-like shape. Modeling of the full reverberation response of Hβwas able to provide only modest constraints on some parameters, but does exhibit agreement with the black hole mass and average time delay. The models also suggest that the AGN structure is misaligned by a large amount from the edge-on galaxy disk. This is consistent with expectations from the unified model of AGNs, in which broad emission lines are expected to be visible only for AGNs that are viewed at relatively face-on inclinations.

     
    more » « less
  4. Abstract

    We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the Hβemission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle (θo≈ 57°) and inclination angle (θi≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement oflogMBH/M=7.220.10+0.11orMBH=1.660.34+0.48×107M, which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars.

     
    more » « less
  5. Abstract

    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  6. Abstract

    We fit the UV/optical lightcurves of the Seyfert 1 galaxy Mrk 817 to produce maps of the accretion disk temperature fluctuationsδTresolved in time and radius. TheδTmaps are dominated by coherent radial structures that move slowly (vc) inward and outward, which conflicts with the idea that disk variability is driven only by reverberation. Instead, these slow-moving temperature fluctuations are likely due to variability intrinsic to the disk. We test how modifying the input lightcurves by smoothing and subtracting them changes the resultingδTmaps and find that most of the temperature fluctuations exist over relatively long timescales (hundreds of days). We show how detrending active galactic nucleus (AGN) lightcurves can be used to separate the flux variations driven by the slow-moving temperature fluctuations from those driven by reverberation. We also simulate contamination of the continuum emission from the disk by continuum emission from the broad-line region (BLR), which is expected to have spectral features localized in wavelength, such as the Balmer break contaminating theUband. We find that a disk with a smooth temperature profile cannot produce a signal localized in wavelength and that any BLR contamination should appear as residuals in our model lightcurves. Given the observed residuals, we estimate that only ∼20% of the variable flux in theUandulightcurves can be due to BLR contamination. Finally, we discus how these maps not only describe the data but can make predictions about other aspects of AGN variability.

     
    more » « less
  7. null (Ed.)